Competency Statements : Standard XII

Area/ Unit/ Lesson	Competency Statements After studying the content in Textbook students would be able to
Unit I Ratational Motion and Mechanical Properties of fluids	 Distinguish between centrifugal and centripetal forces. Visualize the concepts of moment of inertia of an object. Relate moment of inertia of a body with its angular momentum. Differentiate between translational and rotational motions of rolling objects. Relate the pressure of a fluid to the depth below its surface. Explain the measurement of atmospheric pressure by using a barometer. Use Pascal's law to explain the working of a hydraulic lift and hydraulic brakes. Relate the surface energy of a fluid with its surface tension. Distinguish between fluids which show capillary rise and fall. Identify processes in daily life where surface tension plays a major role. Explain the role of viscosity in everyday life. Differentiate between streamline flow and turbulent flow.
Unit II Kinetic theory and Thermodynamics	 Relate various gas laws to form ideal gas equation. Distinguish between ideal gas and a real gas. Visualise mean free path as a function of various parameters Obtain degrees of freedom of a diatomic molecule. Apply law of equipartition of energy to monatomic and diatomic molecules. Compare emission of thermal radiation from a body with black body radiation. Apply Stefan's law of radiation to hot bodies . Identify thermodynamic process in every day life. Relate mechanical work and thermodynamic work. Differentiate between different types of thermodynamic processes. Explain the working of heat engine, refrigerator and air conditioner.
Unit III Oscillations and waves	 Identify periodic motion and simple harmonic motion. Obtain the laws of motion for simple pendulum. Visualize damped oscillations. Apply wave theory to understand the phenomena of reflection, refraction, interference and diffraction. Visualize polarized and unpolarized light. Apply concepts of diffraction to calculate the resolving power. Distinguish between the stationary waves in pipes with open and closed ends. Verify laws of vibrating string using a sonometer. Explain the physics involved in musical instruments.
Unit IV Electrostatics and electric current	 Use Gaus's law to obtain the electric field for a charge distribution. Relate potential energy to work done to establish a charge distribution. Determine the electrostatic potential for a given charge distribution. Distingusih between conductors and insulators. Visualize polarization of dielectrics. Categorize dielectrics based on molecular properties. Know the effect of dielectric material used between the plates of a capacitor on its capacitance. Apply Kirchhoff's laws to determine the current in different branches of a circuit. Find the value of an unknown resistance by using a meter bridge. Find the emf and internal resistance of a cell using potentiometer. Convert galvanometer into voltmeter and ammeter by using a suitable resistor.

Unit V Magnetism	 Realize that Lorentz force law is the basis for defining unit of magnetic field. Visualize cyclotron motion of a charged particle in a magnetic field. Analyze and calculate magnetic force on a straight and arbitrarily shaped current carrying wires and a closed wire circuit. Apply the Biot-Savart law to calculate the magnetic field produced by various distributions of currents. Use Ampere's law to get magnetic fields produced by a current distribution. Compare gravitational, magnetic and electrostatic potentials. Distinguish between paramagnitic, diamagnetic and ferromagnetic materials. Relate the concept of flux to experiments of Faraday and Henry. Relate Lenz's law to the conservation of energy. Visualize the concept of eddy currents. Determine the mutual inductance of a given pair of coils. Apply laws of induction to explain the working of a generator. Establish a relation between the power dissipated by an AC current in a resistor and the value of the rms current. Visualize the concept of phases to represent AC current. Explain the passage of AC current through circuits having resistors, capacitors and inductors. Explain the concept of resonance in LCR circuits.
Unit VI Modern Physics	 Establish validity of particle nature of light from experimental results. Determine the necessary wavelength range of radiation to obtain photocurrent from given metals. Visualize the dual nature of matter and dual nature of light. Apply the wave nature of electrons to illustrate how better resolution can be obtained with an electron microscope. Check the correctness of different atomic models by comparing results of various experiments. Identify the constituents of atomic nuclei. Differentiate between electromagnetic and atomic forces. Obtain the age of a radioactive sample from its activity. Judge the importance of nuclear power. Explain use of p-n junction diode as a rectifier. Find applications of special purpose diodes for every day use. Explain working of solar cell, LED and photodiode. Relate the p-n junction diode and special purpose diodes. Realize transistor as an important building block of electronic circuits, analyze situations in which transistor can be used.